MODERN GRID STRATEGY

Smart Grid Metrics Monitoring our Progress

Smart Grid Implementation Workshop Joe Miller - Modern Grid Team June 19, 2008

Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability

Conducted by the National Energy Technology Laboratory

MODERN GRID STRATEGY

Many are working on the Smart Grid

Smart Grid Principal Characteristics

The Smart Grid will:

- Enable active participation by consumers
- Accommodate all generation and storage options
- Enable new products, services and markets
- Provide power quality for the digital economy
- Optimize asset utilization and operate efficiently
- Anticipate & respond to system disturbances (self-heal)
- Operate resiliently against attack and natural disaster

Metrics are everywhere

What is a Metric?

- A standard of measurement (per Webster)
- A count or measurement
- Measurable and objective
- Can be trended
- Linked to an objective needs context
- Metric categories
 - Value
 - Build

Why do we need metrics?

Keep us on track

- Identify successes and opportunities for improvement
- Initiate Corrective Action to address problems
- Reinforce good progress
- Serve as an effective communication tool
- Create alignment and motivation among stakeholders

Enable us to project future progress

- Establishes baseline for target setting
- Provides insights for interdependent efforts
- Keeps the "end in mind"

MODERN GRID STRATEGY

An example:

Nuclear Power's Success Story

Some Metrics That Supported It

An example - Nuclear Power Industry

Objective – Improve Economics

Objective – Improve Nuclear Safety

Metrics

- Refueling Outage Duration
- Production Cost
- Capacity Factor

Metrics

- Industrial Safety
- Safety System Performance
- Radiation Exposure

Example - Nuclear Power Metric

Smart Grid Metric Map

Value Metrics - Work to date

Reliability

- Outage duration and frequency
- Momentary outages
- Power Quality measures

Security

- Ratio of distributed generation to total generation
- Number of consumers participating in energy markets

Economics

- Peak and average energy prices by region
- Transmission congestion costs
- Cost of interruptions and power quality disturbances
- Total cost of delivered energy

Value Metrics - Work to date

Efficient

- System electrical losses
- Peak-to-average load ratio
- Duration congested transmission lines loaded >90%

Environmentally Friendly

- Ratio of renewable generation to total generation
- Emissions per kilowatt-hour delivered

Safety

Injuries and deaths to workers and public

Workshop Breakout Sessions

Linking Metrics to the Characteristics:

- Enable active participation by consumers
- Accommodate all generation and storage options
- Enable new products, services and markets
- Provide power quality for the digital economy
- Optimize asset utilization and operate efficiently
- Anticipate & respond to system disturbances (self-heal)
- Operate resiliently against attack and natural disaster

